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Formulae for the integration of the Schriidinger equation for bound states based on the 
scheme of central differences are generated from the Taylor expansion with the help of formal 
Pad6 approximants. These methods are studied in matrix form, and a limiting formula-the 
best for a given discretization-is obtained. 

1. INTRODUCTION 

With the exception of a few cases, the Schrodinger equation is not analytically 
integrable, and very frequently one has to resort to numerical methods for the 
(approximate) solution of the eigenvalue problem. The determination of bound states 
corresponds to a two-point boundary value problem such that the solution is zero at 
r = 0 and at r -+ co (in the case of the reduced radial equation for potentials with 
spherical symmetry) or at x-+ foe (in one-dimensional problems). The question is to 
determine those values of the energy compatible with the prescribed boundary 
conditions. Three frequently used methods for the numerical integration are the 
following. 

(a) The step-by-step methods (referred to also as “shooting” methods). These 
methods are based on the finite-difference scheme, and consist of an approximation to 
the second derivative of the wave function at x in terms of the wave function at x, 
x f h, x * 2h,.... In practical applications one assumes (shoots) a value for the 
energy and then integrates from the origin up to a maximum value of r, R. The value 
of the energy is varied so as to fulfill the boundary condition at R. One of the most 
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widely used shooting methods is known as the Numerov method [ 11. A general 
description and generalizations can be found in [2-81. 

(b) The finite-element method. The integration region is divided into domains 
where the potential does not change too much, and the potential is approximated in 
these domains by forms simple enough to have analytical solutions of the 
Schriidinger equation (e.g., the potential is substituted by a staircaselike form). The 
actual solutions are obtained by satisfying the boundary conditions at r = 0 and 
r+ co, supplemented by the matching of the logarithmic derivative at the borders of 
the domains [9-l 11. 

(c) The Rayleigh-Ritz-Galerkin [ 121 or spectral method [ 111. The solution is 
expanded in a (not necessarily orthogonal) basis and the corresponding secular 
equation is solved. The basis is usually chosen so that the matrix elements of the 
potential and kinetic energy operators are fairly simple to compute (such as harmonic 
oscillator, sine basis [ 131, splines [ 141, Gaussians [ 151). All these methods have been 
empirically tested [ 161 and compared with finite-difference methods for the case of 
the Morse potential. The main disadvantage is the need for the exact analytic 
computation of the matrix elements of the potential, but this can be avoided through 
the use of special quadrature formulae [ 17-181. The strong relation between the use 
of splines and the finite-element method should also be stressed. 

The finite-element and the Rayleigh-Ritz-Galerkin methods cannot be considered 
as universal methods, because they require a good knowledge of the potential for the 
decomposition into domains or for selecting the basis. When applicable, they are very 
accurate. Methods based on finite differences are more general, and usually, a very 
good knowledge of the potential is not necessary, being (for this reason) particularly 
convenient in Hartree-Fock-like calculations. 

Finite-difference scheme methods for the solution of the Schrodinger equation’have 
frequently been formulated in matrix (or global) form [ 16, 19-211, so that one should 
no longer refer to these methods as “shooting” methods. Certainly, the eigenvalues 
and eigenvectors are the same regardless of the procedure followed for their solution. 

This paper is concerned with the methods based on the finite-difference scheme 
from a global or matrix point of view. Section 2 is devoted to a unified presentation 
of (constant step) finite-difference methods (Taylor expansion, Numerov-like methods 
(21, extended-Numerov methods [ 181, and other methods not yet described), all of 
them related to Pad& approximants in the variable d2. The generating method is fairly 
simple (cf. [8]), and even the determination of the error involved is simple. 

In Section 3 all these methods are written in matrix form, using the simple 
properties of the matrix associated with d2, giving rise to a generalized matrix- 
eigenvalue problem. It then appears that the transformation to a discretized plane- 
wave basis is the correct way to transform the generalized eigenvalue problem into a 
standard matrix-eigenvalue problem. The plane-wave representation suggests a 
mechanism to sum up the whole Taylor expansion, and this gives the optimal 
integration rule within the finite-difference scheme. This step is carried out in 
Section 4. 
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We should remark that the use of Pade approximants for the expansion of the 
second derivative in terms of a2 is by no means related to the numerical approx- 
imation with Padt algorithm [22]. (It may be related, however, to the extrapolation 
techniques to null step [23].) Furthermore, the presence of the discretized plane-wave 
basis does not imply that the same basis is the best one for Rayleigh-Ritz-Galerkin 
methods. Finally, the use of optimal as adjective of our plane-wave method only 
means that this is the best method within the finite-difference schemes. It may well 
happen that other approaches give better results with the same or less computational 
work. 

Although we will refer to the radial Schrodinger equation, i.e., the differential 
equation obtained after the change v(r) = R(r) Y&i)/r extending from 0 to co, all 
our results are also valid for the one-dimensional equation. 

2. FINITE DIFFERENCES 

a. The Taylor Expansion 

Consider the set {f,), where f, =f(x, + nh), which corresponds to a discretization 
of the function f(x) at the points xt,, X, + h,..., x0 + Nh. The value off at the point 
x,, + (n + 1) h is related to the value at the point x0 + nh by the Taylor series 

f,+,={1+hD+(h2/2!)D2+...}fn, 

where D is the operator d/dx. In a symbolic form we may write 

f,,, = ew{hDlf,,. 

The central differences are defined as 

Sf, = f(xo + nh + +h) - j-(x, + nh - fh) (3) 

and by using the symbolic equation (2) we obtain the formal representation of 6 

6 = exp{$hD} - exp{-fhD} = 2 sinh(fhD). (4) 

This equation is the clue of numerical methods for the solution of differential 
equations in the finite-difference scheme. If the equation is inverted it becomes 

hD = 2 sinh-‘{d/2} (5) 

and, insofar as we are mainly concerned with the radial part of the Schrodinger 
equation, we shall refer to the square of Eq. (5), namely, 

h2D2 = 4{sinh-‘(6/2)}2. (6) 
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The expansion in powers of 6/2 is the inversion of the square of Eq. (4), and 
corresponds to 

- T&T alo + T&T fY* - Tiib iv4 + x&iiri P + ***}. (7) 

It is important to observe the absence of odd powers of S in this expansion. This is 
a very important property because Sf, does not belong to our space {f,} defined 
above, but to {fn+i,*}, whereas, S*f, is in our space. 

Even if the discretization step h is not explicitly present in the r.h.s. of Eq. (7), it is 
implicitly present in 6, so that if we retain powers of 6 up to dzN in the r.h.s. of (7), 
then the second derivative is computed to order h2Nt2 (i.e., the term hZN+* is the first 
term not included in the calculation of the second derivative). The formal equations 
(5~(7) are well known in numerical analysis and have been used as generating 
formulae for both differentiation and integration methods [24]. 

The utility of Eq. (7) for the numerical solution of the Schrodinger equation is a 
consequence of the particular form of the latter, 

d* - 
&2 w=(V-E)y/ 

or, in the symbolic form used above 

D*iy=(V-E)q (8) 

Then Eq. (7) gives a set of relations between (V, -E) VI,, and the even differences 
~**I,u, and once boundary conditions have been imposed the referred set of equations 
may be solved by iteration for any value of E. This is known as a “shooting 
method”: the eigenvalues E are adjusted so that the solution {w,} satisfies the 
required boundary conditions. We shall deal with the question of boundary 
conditions later on. 

b. Pad6 Approximants 

In practical applications Eq. (7) is terminated at a given power of 6. The series 
expansion (7) is difficult to analyze because it is acting on a (unknown) set of values 
{v,} and may be asymptotic [7, 191. Certainly, if 6 were simply a number, the 
convergence radius of expansion (7) would be limited to IS/21 < 1, ‘which is the 
radius of convergence of the Taylor expansion for sinh-‘(x) [25]. A general 
procedure for extending the radius of convergence is the use of techniques based on 
PadC approximants [26]. We apply this procedure to expansion (7) to obtain the 
following formulae (the notation h* D* [N/M] means that h*D* is expressed as a 
quotient of polynomials in 6* of degree N and M, respectively): 

h*D* [ l/O] = 6* - -& h4D4 

h*D*[2/0] = a*(1 -&S’) + &h6D6 
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h2D2[ l/l I= 1 +d;J2 + & h6D6 
12 

h2D2 [3/O I]= rJ2( 1 - &S2 + h-s”) + -&hsD8 

h2D2[2/1] = ‘*;‘++$f2) - 75,600 23 h8D8 

IS 

h2D2[ l/2] = 
d2 

-3% 1+&s2-&-64 ’ 
h8D8 

h2D2[4/0] = d2( 1 - Ad2 t &J4 - &S”) t &=#“D1o (9) 

h2D2[3/1] = 
S’(1 + *a2 - *a4) 

1 t@’ + &h”D” 

h*D* [2/2] = 
S’(1 + j&S’> 

1 + l&z ; 2iod4 + *h’OD’O 

h*D*[ l/3] = r3* 
1 t~~*-~d4t*s6 

+ +&,hl’D1’ 

h2D2[5/0] = a’(1 - +d2 + $d4 - &# + &S”) - 6.01 x 10-5h’2D’2 

h2D2[4/1] = s2(1 + +&d2 -+id” +&td”) _ 3 688 x 10-6h’ZD’2 

1 +&a2 45 

h2D2P/21 = “(l +i%’ +&d”) _ 1 156 x 10--6h’2D’2 1 + L62 + 
23 +s4 * 

h2D2P/31 = 1 
fJ2(1 - &jS’) 

2;;op _ 9,9 i?i-d4 + Ti$E+i@ 
- 3.287 x 10-5h’2D’2 

d2 
h2D2[1/4]= 1 t&&&~4+-.&+jL+$& 

- 1.265 x 10-5h’2D’2. 

We have included only a small subset of all the possible formulae. The Pade forms 
[N/O] correspond to the three-, five-,... point integration formulae for N = 1, 2,... . One 
may also recognize the three-, five-,... point Numerov’s formulae [2] which 
correspond to the PadC forms [l/l], [l/2],..., [l/N], respectively. Another subset of 
interest is that of the diagonal Padi approximants [l/l], [2/2],..., [N/N] which have 
been recently studied [S] and called “extended Numerov methods.” (Note that there 
is a misprint in Eq. (43) of [8]: the coefficient of f r should be 2358 instead of 
2538.)’ 

’ The extension of the Numerov method of [27], Eq. (12), is not an O(h8) method. Actually, the error 
is h6D6/1980. So that even if there is an error in the derivation of the integration formula, the resulting 
integration formula is better, as the authors conclude, than the three-point Numerov method, its error 
being h6D6/240. The quotient form of Eq. (12), [27] is 6’(1 + +a*)/(1 + +S’ + &a’), which is not a 
PadC approximant to Eq. (7) and furthermore is a five-point formula. 
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In general, the approximant h2D2[N/M] is valid to order h2(N+Mt I) and the 
explicit form of the correction has been included in Eqs. (9). This is a simple conse- 
quence of the way PadC approximants are constructed. Because of that property, all 
forms with N + M constant should have essentially the same accuracy for the 
integration of the differential equation. PadC approximants have unusual properties of 
a not well-known origin so that the accuracy is not a function of N + M only: in fact, 
the three-point Numerov formula [l/l ] gives more precise results than the five-point 
Taylor formula [2/O]. 

A look at the correction terms shows that, for a given value of N + M, the coef- 
ficient of (hD) 2(NtMt ‘) has the smaller value in the cases M = N or M = N - 1. This 
subset of the Pad& table, namely, [N/N] and [N + l/N], corresponds to the stepwise 
path followed by the convergents of the continuous-fraction expansion [26]. 

From a practical point of view, the best formula is the one containing the smaller 
powers of S for the same value of N + M because ~3~” corresponds to a (2n + I)-point 
integration formula. Accordingly, the optimal formulae from the computational point 
of view are the [N/N] forms, i.e., the extended Numerov formulae of Burke and the 
[N + l/N] forms. Finally, note that Eqs. (9) do not have the usual form: currently 
the operator in the denominator is acting on the lhs, and the difference operators 6” 
are written in the explicit form 

<->“f,+n-kc (10) 

For example, the [l/l ] form is usually written as 

-24fn + 12(f,+, +f,-,)=h2(10f:: +./-A’+, +.!-:-I) (11) 
and the [2/2] form becomes 

-477OL + 192O(.L+, +.&-A + 46wit2 +.L-2) 

= h2(2358f:: + 688df:+, +f:-,) + 23cf;+, +f;w2)). (12) 

3. MATRIX FORM OF THE FINITE-DIFFERENCE SCHEME 

a. Boundary Conditions 

Matrix forms for the previous difference schemes are obtained by a very simple 
procedure: let us consider the solution of the Schrodinger equation as a column 
vector of components wl, w2 ,..., v~, where v, = I. This vector is the position 
representation of the solution v(r) in the discretized coordinate basis {x, ,..., xN} with 
xp = ph. When assuming that representation of v(r) we are implicitly imposing the 
boundary conditions 

I& = 0) = 0 

I@ = (N + 1) h) = 0. 
(13) 
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FIG. 1. Schematic representation of the numerical solution of the Schriidinger equation with 
boundary conditions f(0) =f(R) = 0. (a) The potential to be solved (thick line) and the exact wave 
function (dashed line). (b) The effect of the inclusion of an infinite barrier at r = R. (c) The periodicity 
conditions implied in the numerical methods. 

The first condition is satisfied by the radial solution of the Schrodinger equation 
(note that the simple form Eq. (8) of the Schriidinger equation results from the 
separation of variables O(r) = v(r) Y,,( r )/ I, and that the behaviour of v(r) at the 
origin turns out to be r It1 for the regular solution, at least for well-behaved 
potentials). The second condition (13) is an approximation: in order that the wave 
function be normalizable it must satisfy the condition u/(r) --f 0 at r -+ co, so that the 
second equation of (13) assumes that R = (N + 1) h is already very large. 

The meaning of the boundary conditions (13) is illustrated in Fig. 1. Figure la 
represents the potential to be studied (thick line) and the eigenfunction (dashed line). 
This potential is changed according to Eq. (13) as shown in Fig. lb, by adding two 
infinite barriers at r = 0 and r = R. Certainly, if R is large enough one expects to 
have both energy and wave functions very close to the exact values. 

In this representation the second difference operator 6’ has the matrix form 

-2 1 
1 -2 1 

1 -2 1 
*. -. *. . . * 

1 -2 1 
1 -2 

(14) 
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This tridiagonal matrix appears in many different fields in numerical analysis and 
has the following interesting properties. 

(1) It is diagonalized by the orthogonal and symmetric transformation 

47 = 
(2) Its eigenvalues are 

(ijz), = -4 sin’ 2(NP+ 1) . 

(15) 

(3) The corresponding eigenvectors are the columns of matrix A. 

Note that since all eigenvalues are different, the eigenvectors are uniquely defined 
apart from a phase factor. 

The matrix representation for the fourth-, sixth-,... difference operators is obtained 
by computing the successive powers of a*. We will not be interested in their explicit 
form for the subsequent development but some aspects are of interest. Consider 

5 
-4 

1 

-4 1 
6 -4 1 

-4 6 -4 1 

1 -4 6 -4 1 
* -. *. . * . . . . . . . . I* (14’) 

This is a pentadiagonal matrix whose rows are (0,O ,..., 0, 1, -4, 6, -4, 1, 0 ,..., 0) 
as corresponds to Eq. (10) with the exception of the two first and last rows. The 
fourth difference S4fi should be 

S4f, =f-, - 4f0 + 6f, - llfi +.A (14”) 

and to have a matrix form for d4 it is necessary to add a supplementary boundary 
condition, namely, the value of fwl = f(4) (note that f. = 0, Eq. (13)). This 
boundary condition can be obtained by comparing the first row of matrix (14’) with 
Eq. (14”) and it becomes 

f-l =-f,. 

Analogously, fN+* - - -f,. If the same reasoning is carried out for J6, B’,..., then the 
following set of boundary conditions results: 

f-p = -f, 

f,,, = -f&l+2 
(17) 



382 GUARDlOLA AND ROS 

which correspond to periodicity of the wave function at Y = 0, 2R, 4R,... and antisym- 
metry around R, 3R,... . This is illustrated in Fig. lc. Periodicity is not surprising; 
actually, it is well known that the s-wave solutions of the radial equation are the odd 
solutions of the corresponding one-dimensional potential. The condition of antisym- 
metry at R results from the limitation of the space [0, co] to [0, R]. 

Consider the origin and the practical applications of symmetry properties Eq. (17). 
When the finite-difference schemes are used to solve the two-point boundary value 
problem by the shooting method, there is always the question of how to start. In the 
case where only second differences are involved the solution is trivial: take y, = 0 and 
y, = c, any constant value, and the second difference determines the value of y,. The 
process is repeated up to y,+, , where the outer boundary condition (y,,, = 0) 
determines how good our guess for the eigenvalue is. When a4, @,... differences are 
involved, however, it is necessary to have 4,6,... initial values, which are usually 
determined from second differences with a smaller step or by using the (hopefully) 
known asymptotic properties of the solution near the origin. All of these troubles 
disappear in the matrix formulation, the problem being reduced to the solution of a 
generalized matrix-eigenvalue problem (see Eq. (20)) which is easily converted into a 
standard matrix-eigenvalue problem (see Eq. (25)). 

b. Matrix Form for the Finite D@erence Equations 

Equation (9) and all other generalized finite-difference equations may be written in 
matrix form after the substitution of D’ty by (V- E) IV, giving rise to a generalized 
eigenvalue problem of the form 

NIJ/ = h’M(V - EI) v/, (18) 

where N and M are the matrices corresponding to the numerator and denominator of 
Eq. (9), and V is the diagonal matrix 

vplpq = dp, I/(ph). (19) 

The matrix form of the generalized finite-difference scheme has been used quite 
frequently [2, 161. If Eq. (18) is written in the standard form 

Hy/=EQv, (20) 

then the “overlap” matrix a is always real and symmetric, but H is no longer 
symmetric so that there is no guarantee that the resulting eigenvalues are real (with 
the exception of the cases M= 1, i.e., the [N/O] Pad& form which corresponds to the 
Taylor expansion). This is an unwanted feature of Eq. (20). Another problem in the 
use of Eq. (20) is that the practical solution of the generalized eigenvalue problem is 
more time consuming than the solution of the standard eigenvalue problem. 

In the present case, however, Eq. (18) may be written in a very simple form just by 
considering the particularly simple properties of the matrix representation of a*. By 
carrying out the basis transformation 

ij?=Av (21) 
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with A given by Eq. (15), Eq. (18) turns out to be 

II@ = h’m(V - EI) IJ, (22) 

where n and m are the corresponding diagonal forms of N and M. Given that both N 
and M are a sum of powers of 13~, e.g., 

then the corresponding diagonal matrices are 

n 
P4 = S,, 1 A,(-)n 4” sin2* ‘Jr 

n 2(N + 1) 

and an analogous result for m. Finally, the potential matrix p is given by 

ppq=&Tsin (5) V(lh)sin (-$+). (24) 

The next step is to divide both sides of Eq. (22) by m (provided none of the eigen- 
values of m is nul12) so as to convert the generalized eigenvalue problem into 

@+5)$=&F, 

where T is a diagonal matrix given by 

(25) 

Tpq = -J,, npplh2mpp. (26) 

There is a very important consequence of Eq. (25): the matrix in the lhs is real and 
symmetric (note that P is symmetric) so that the solution of the eigenvalue equation 
(25) provides us with N real eigenvalues. A large number of these eigenvalues will 
not correspond to physical bound states and are a consequence of the inclusion of the 
two infinite walls at r = 0 and r = R, but the lowest eigenvalues are expected to 
correspond to true eigenvalues of the Schriidinger equation provided R is large 
enough and h small enough. 

The explicit form of the matrix ?; Eq. (26), is very easily obtained from Eq. (9) by 
the formal replacement 

a2 -+ -4 sin’ 
(2&T 1)) (27) 

so that the construction of Eq. (26) is very simple. 

* Empirical calculations show a strong relation among the poles of Pad6 approximants and the 
singularities of the function (see [26], particularly Chapter IO), and probably all poles of the successive 
Pad& approximants are outside the circle of convergence of sinh-’ z, i.e., the circle of radius 8 = 4. 
There is, however, no proof of this statement. 
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4. THE MOMENTUM REPRESENTATION AND A NEW INTEGRA~ON RULE 

The process carried out in the preceding section is equivalent to expressing all 
finite-difference schemes in the basis of discretized plane waves. The columns of the 
matrix A, Eq. (15), are a discrete set of plane waves in a box of infinite walls 
extending from r = 0 to r = R. The lth state is represented by N components which 
are the (discrete) position representation of dm sin(lm/R). Furthermore, the 
vector I,? is the representation of the radial wave function in the same discretized 
momentum basis, and p is the matrix corresponding to the potential in the same 
basis. We will refer to the set of orthogonal vectors which constitute the matrix A as 
PW, acronym of plane waves. 

Let Ip), Is>,... represent vectors of the set PW, and In), Im),... basis vectors of the 
position representation. Then 

(nlp)=J&sinz 

and the matrix p in momentum representation is 

~pp,=(P ~ls>=C(Pln)(nl~In)(nlq), ” 

(28) 

(29) 

because (nl Vim) is diagonal in position representation, its value being V,S,, . Then 

(30) 

which is exactly Eq. (24). We have computed P carefully to realize that p is exactly 
computed in the discretized basis, even if Eq. (24) looks like a trapezoidal integration 
rule. If the latter were true, i.e., if the potential were computed through a trapezoidal 
rule, all finite-difference methods would have accuracy 0(/r*). Note also that in 
Eq. (24) the value of the matrix P is the same for any method based on finite 
differences, the difference among the various integration rules being only in the value 
used for the kinetic part i? 

It is important to realize that the PW basis has appeared naturally in our 
development, this basis being the only one which diagonalizes ?I*. If, however, we 
were working from the very beginning with the PW basis, then for the kinetic term, 
we would have used a matrix very different from the matrices related to Eq. (9), 
namely, 

which corresponds to the discretized form of the kinetic energy operator in the 
momentum representation. It is then natural to conjecture that the PW form for 
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kinetic energy equation (31) is the limiting form for any [N/M] family of the Pade 
table, and this may be formally proved as follows: From the diagonal representation 
of 6*, Eq. (27), we may write 

Spp = 2i sin ” 
2(N+ 1) 

so that the inverse of Eq. (5) says 

= i sin 2(N + I) 

i.e., 

PZ 
2(N+ 1) 

(D2)pp= -h-2 fi *, 
( 1 

The proof is purely formal because 6 extends outside our space: the central 
differences, according to Eq. (3) need the values of the function at half-integer points, 
which are not included in the space. Appendix A includes a proof of Eq. (31). 

In Fig. 2 we compare the diagonal matrix elements of p for the Numerov methods, 
the Taylor expansion, and the PW result Eq. (3 I) for N = 20. The tendency of these 
values toward the PW result is clear when the accuracy increases, and we may 

10 - 

8 - 

6 - 

4 - 

2 - 

O- 

__ _-.--__ &,’ ,-.- --=---- _ ‘E‘--.- ____ = .,- - - ,I - =, _ - - - - - -Y.,= - - _ _____ - ____ - .___-....-.._. -__ __,__ = 
X*-’ _ - - - - - _ --..= --_- =-----=- -- --- - ====== -==- - 
_ G == - = -Ei=zz--a 
a b c d PW D C B A 

FIG. 2. The diagonal elements of the kinetic energy operator in several approximations (in units of 
/I’). The spectra labeled a, b, c, and d correspond to the 3-, S-, 7-, and 9-point Numerov methods (Padt 
forms I/n). The spectra labeled A, B, C, and D correspond to the 3-, 5, 7-, and 9-point Taylor methods 
(Padi forms n/O). PW corresponds to the discretized plane wave method. The number of mesh points is 
N = 20, and the dashed lines connect corresponding states. 
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conclude that the PW form is optimal for the calculation of the kinetic energy in the 
finite-difference schemes. 

The PW form of the eigenvalue equation may be transformed back to position 
representation by computing the quantities 

2 y . pm . pm 1 
T,, = - 

N+lY 
sm - sm - - 

N+l 
’ 

with the result 

T,,= (-i$‘” (NzI)2 1 [sin2 1;,-,“‘,;I-‘- [sin’ F(G+“‘l;]-‘/, nfm 

Tnm=l n2 
(32) 

h2 (N+ 1)2 I 
$N~+;N+~- 

and eigenvalue equation (25) may be solved in position representation using for V the 
diagonal coordinate form. Accordingly, we may bypass the computation of the 
Fourier transform of V. The position representation results in a noticeable saving of 
computing time in the case of extensive use of the numerical solution of the 
SchrGdinger equation as, e.g., in Hartree-Fock calculations, because the kinetic 
energy matrix (32) may be computed and saved at the beginning, and only the 
diagonal values of I/ need to be recomputed at each iteration. 

5. CONCLUSIONS 

The preceding sections present a unified description of numerical methods based 
upon the finite-difference schemes at constant step and the limit corresponding to the 
discretized plane-wave method. There are some results to be specifically mentioned. 

(1) Among methods accurate up to order h’“, the best ones correspond to the 
PadC forms [&/$n] or [f(n + l)/$(n - l)]. Moreover, these methods are the simplest 
because they involve smaller powers of the difference operator 6. 

(2) No special procedure is needed to determine the starting values of the 
function to carry out the integration. 

(3) Insofar as all methods give rise to a standard matrix-eigenvalue problem, 
the matrix being symmetric, they always provide a set of N real eigenvalues. 

(4) In contrast with the conjecture of Mayers [7], expansion (7) of the second 
derivative is not asymptotic, but strictly convergent in the domain of functions with 
the boundary conditions f(0) = f((N + 1) h) = 0, because the operator 6* is bounded 
(Eq. (16)). 

(5) The exact summation is easily carried out and gives the best fmite- 
difference integration method (PW method, Eq. (32)). The word “best” is correctly 
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applied in this context. All finite-difference based methods give rise to a matrix- 
eigenvalue problem (T + v) w = Ey, where the potential matrix V is independent of 
the method, and the kinetic energy T has the best representation in the plane-wave 
limit. 

There is a final remark which is worth considering. It is customary to classify the 
errors in the numerical integration of the Schrodinger equation into three groups 
[ 161: termination errors coming from the use of a finite value of R, roundoff errors 
related to the finite-word length in computing machines, and truncation errors related 
to the approximation involved in the representation of a differential equation by a 
finite set of equations. We will only comment on the third kind of error. Truncation 
errors are due to truncation of the Taylor series expansion and decrease when the 
integration step decreases. These errors, however, do not disappear when the Taylor 
expansion is not truncated, as in the case of the PW limit. The use of a discretization 
in N points is somehow equivalent to considering a basis of N plane waves, and the 
lack of completeness of this basis is still the remaining source of error. 

APPENDIX A 

The proof of Eq. (31) is carried out in the following manner: Start from the 
equation 

h2D2 = 4{sinh-‘(6/2)}* 

at 6* = -4 sin*(&2(N + l)), corresponding to the (p, p) diagonal element. The 
Taylor expansion of sinh-’ gives the result 

(2n)! 
2’“(n!)* (2n + 1) ’ 

a2 sg 4, (AlI 

where only 6* is present, so that 

h*D* = -4 sin* 

If this equation is compared with the series expansion of sin -‘(x)/x, namely, 

sin-‘(x) = a, 2n 
xi 1 

1 

( 1 

2n 

X n (2n+*) G ’ x2( 1, 
PI=0 

then one concludes that 

(A3) 

2 

h2D2 = -4 sin* PX PK 
sin 2(N+ 1) 

PX 
2(N + 1) sin 2(N+ 1) II ” 
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There is no ambiguity when interpreting sin-‘(sin x), because Eq. (A3) 
corresponds to sin - ’ x in the (-7r/2,7r/2) determination. Then Eq. (31) turns out. 

There is also an important consequence of Eq. (Al). The expansion of sinh- ’ is 
valid in the domain x2 < 1, i.e., 6’ < 4, but the operator d2 is strictly bounded by -4 
(see Eq. (27)), so that all integration rules based upon Eq. (7) are well behaved, 
contrary to the conjecture of Mayers [7]. 

Probably, the instability related to the use of more-than-three-point integration 
formulae is a consequence of the inaccuracy in computing the starting points, this 
problem not occurring in the case of three-point formulae (see e.g., [2] and [27 ] on 
that question). We believe this is the explanation of Mayers’ [ 71 and Blatt’s [3] 
comments on the use of many-point integration rules. Note that the Numerov three- 
point formula is effectively a many-point integration formula: if one transforms the 
Numerov method back to coordinate representation (as we do with the ,PW method at 
the end of Section 4) then a full (not banded) N x N matrix results. The absence of 
instability of Numerov three-point formula supports our explanation. 
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